On the Mechanism of Proton Transport by the Neuronal Excitatory Amino Acid Carrier 1

نویسندگان

  • Natalie Watzke
  • Thomas Rauen
  • Ernst Bamberg
  • Christof Grewer
چکیده

Uptake of glutamate from the synaptic cleft is mediated by high affinity transporters and is driven by Na(+), K(+), and H(+) concentration gradients across the membrane. Here, we characterize the molecular mechanism of the intracellular pH change associated with glutamate transport by combining current recordings from excitatory amino acid carrier 1 (EAAC1)-expressing HEK293 cells with a rapid kinetic technique with a 100-micros time resolution. Under conditions of steady state transport, the affinity of EAAC1 for glutamate in both the forward and reverse modes is strongly dependent on the pH on the cis-side of the membrane, whereas the currents at saturating glutamate concentrations are hardly affected by the pH. Consistent with this, the kinetics of the pre-steady state currents, measured after saturating glutamate concentration jumps, are not a function of the pH. In addition, we determined the deuterium isotope effect on EAAC1 kinetics, which is in agreement with proton cotransport but not OH(-) countertransport. The results can be quantitatively explained with an ordered binding model that includes a rapid proton binding step to the empty transporter followed by glutamate binding and translocation of the proton-glutamate-transporter complex. The apparent pK of the extracellular proton binding site is approximately 8. This value is shifted to approximately 6.5 when the substrate binding site is exposed to the cytoplasm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Is the glutamate residue Glu-373 the proton acceptor of the excitatory amino acid carrier 1?

Glutamate transport by the neuronal excitatory amino acid carrier (EAAC1) is accompanied by the coupled movement of one proton across the membrane. We have demonstrated previously that the cotransported proton binds to the carrier in the absence of glutamate and, thus, modulates the EAAC1 affinity for glutamate. Here, we used site-directed mutagenesis together with a rapid kinetic technique tha...

متن کامل

Molecular dynamics simulations elucidate the mechanism of proton transport in the glutamate transporter EAAT3.

The uptake of glutamate in nerve synapses is carried out by the excitatory amino acid transporters (EAATs), involving the cotransport of a proton and three Na(+) ions and the countertransport of a K(+) ion. In this study, we use an EAAT3 homology model to calculate the pKa of several titratable residues around the glutamate binding site to locate the proton carrier site involved in the transloc...

متن کامل

Functional diversity of excitatory amino acid transporters: ion channel and transport modes.

Recent studies of glutamate transporters in the central nervous system indicate that in addition to their fundamental role in mediating neurotransmitter uptake, these proteins may contribute to the modulation of a variety of cellular processes. Activation of the excitatory amino acid (EAA) carriers generates an electrogenic current attibutable to ion-coupled cotransport. In addition to this tra...

متن کامل

Charge compensation mechanism of a Na+-coupled, secondary active glutamate transporter.

Forward glutamate transport by the excitatory amino acid carrier EAAC1 is coupled to the inward movement of three Na(+) and one proton and the subsequent outward movement of one K(+) in a separate step. Based on indirect evidence, it was speculated that the cation binding sites bear a negative charge. However, little is known about the electrostatics of the transport process. Valences calculate...

متن کامل

High affinity glutamate transport in rat cortical neurons in culture.

We assayed glutamate transport activity in cultures of rat cortical neurons containing < 0.2% astrocytes. Using [3H]L-glutamate as the tracer, sodium-dependent high affinity glutamate transport was demonstrated [K(m) = 17.2 +/- 2.4 microM; Vmax = 3.3 +/- 0.32 nmol/mg of protein/min (n = 5)]. Dihydrokainate (1 mM) inhibited uptake of radioactivity by 88 +/- 3% and had a Ki value of 65 +/- 7 micr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2000